Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375883

RESUMEN

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Asunto(s)
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/genética , Laccaria/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos/metabolismo
2.
Plant J ; 118(2): 304-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265362

RESUMEN

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Asunto(s)
Briófitas , Bryopsida , Micorrizas , Filogenia , Endófitos/metabolismo , Análisis Multinivel , Proteínas de Plantas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Micorrizas/metabolismo
3.
New Phytol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062903

RESUMEN

Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.

5.
Nat Plants ; 9(8): 1207-1220, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474781

RESUMEN

Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.


Asunto(s)
Ecosistema , Zosteraceae , Zosteraceae/genética , Canadá , Filogeografía , Océanos y Mares
6.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221014

RESUMEN

Black yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood. We have isolated 2 novel black yeasts from the genus Exophiala that were recovered from dryland biological soil crusts. Despite notable differences in colony and cellular morphology, both fungi appear to be members of the same species, which has been named Exophiala viscosa (i.e. E. viscosa JF 03-3 Goopy and E. viscosa JF 03-4F Slimy). A combination of whole genome sequencing, phenotypic experiments, and melanin regulation experiments have been performed on these isolates to fully characterize these fungi and help decipher their fundamental niche within the biological soil crust consortium. Our results reveal that E. viscosa is capable of utilizing a wide variety of carbon and nitrogen sources potentially derived from symbiotic microbes, can withstand many forms of abiotic stresses, and excretes melanin which can potentially provide ultraviolet resistance to the biological soil crust community. Besides the identification of a novel species within the genus Exophiala, our study also provides new insight into the regulation of melanin production in polyextremotolerant fungi.


Asunto(s)
Exophiala , Melaninas , Exophiala/genética , Hongos , Ecosistema , Suelo
7.
Genome Biol Evol ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36930540

RESUMEN

Fungi have evolved over millions of years and their species diversity is predicted to be the second largest on the earth. Fungi have cross-kingdom interactions with many organisms that have mutually shaped their evolutionary trajectories. Zygomycete fungi hold a pivotal position in the fungal tree of life and provide important perspectives on the early evolution of fungi from aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete fungi diversified into two separate clades, the Mucoromycota which are frequently associated with plants and Zoopagomycota that are commonly animal-associated fungi. Genetic elements that contributed to the fitness and divergence of these lineages may have been shaped by the varied interactions these fungi have had with plants, animals, bacteria, and other microbes. To investigate this, we performed comparative genomic analyses of the two clades of zygomycetes in the context of Kingdom Fungi, benefiting from our generation of a new collection of zygomycete genomes, including nine produced for this study. We identified lineage-specific genomic content that may contribute to the disparate biology observed in these zygomycetes. Our findings include the discovery of undescribed diversity in CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zygomycetes. Reconciliation analysis identified multiple duplication events and an expansion of CotH copies throughout the Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus lineages. A kingdom-level phylogenomic analysis also identified new evolutionary relationships within the subphyla of Mucoromycota and Zoopagomycota, including supporting the sister-clade relationship between Glomeromycotina and Mortierellomycotina and the placement of Basidiobolus as sister to other Zoopagomycota lineages.


Asunto(s)
Glomeromycota , Mucormicosis , Animales , Mucormicosis/genética , Hongos/genética , Filogenia , Glomeromycota/genética , Plantas/genética , Genoma Fúngico , Evolución Molecular
8.
Fungal Genet Biol ; 165: 103781, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36801368

RESUMEN

Low-cost plant substrates, such as soybean hulls, are used for various industrial applications. Filamentous fungi are important producers of Carbohydrate Active enZymes (CAZymes) required for the degradation of these plant biomass substrates. CAZyme production is tightly regulated by several transcriptional activators and repressors. One such transcriptional activator is CLR-2/ClrB/ManR, which has been identified as a regulator of cellulase and mannanase production in several fungi. However, the regulatory network governing the expression of cellulase and mannanase encoding genes has been reported to differ between fungal species. Previous studies showed that Aspergillus niger ClrB is involved in the regulation of (hemi-)cellulose degradation, although its regulon has not yet been identified. To reveal its regulon, we cultivated an A. niger ΔclrB mutant and control strain on guar gum (a galactomannan-rich substrate) and soybean hulls (containing galactomannan, xylan, xyloglucan, pectin and cellulose) to identify the genes that are regulated by ClrB. Gene expression data and growth profiling showed that ClrB is indispensable for growth on cellulose and galactomannan and highly contributes to growth on xyloglucan in this fungus. Therefore, we show that A. niger ClrB is crucial for the utilization of guar gum and the agricultural substrate, soybean hulls. Moreover, we show that mannobiose is most likely the physiological inducer of ClrB in A. niger and not cellobiose, which is considered to be the inducer of N. crassa CLR-2 and A. nidulans ClrB.


Asunto(s)
Aspergillus niger , Celulasa , Aspergillus niger/genética , Glycine max/metabolismo , Factores de Transcripción/genética , Celulosa/metabolismo , Celulasa/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética
9.
Nat Plants ; 9(2): 238-254, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747050

RESUMEN

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Asunto(s)
Ecosistema , Sphagnopsida , Secuestro de Carbono , Sphagnopsida/fisiología , Clima , Cromosomas Sexuales
10.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807327

RESUMEN

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Asunto(s)
Laccaria , Micorrizas , Populus , Micorrizas/fisiología , Árboles/genética , Árboles/metabolismo , Raíces de Plantas/metabolismo , Metilación de ADN/genética , ADN , Populus/metabolismo , Laccaria/genética
11.
New Phytol ; 238(2): 845-858, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702619

RESUMEN

Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.


Asunto(s)
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Quitina/metabolismo , Árboles/metabolismo , Bosques , Genómica , Suelo
12.
J Plant Physiol ; 277: 153791, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36027837

RESUMEN

Crassulacean acid metabolism (CAM) plants exhibit elevated drought and heat tolerance compared to C3 and C4 plants through an inverted pattern of day/night stomatal closure and opening for CO2 assimilation. However, the molecular responses to water-deficit conditions remain unclear in obligate CAM species. In this study, we presented genome-wide transcription sequencing analysis using leaf samples of an obligate CAM species Kalanchoë fedtschenkoi under moderate and severe drought treatments at two-time points of dawn (2-h before the start of light period) and dusk (2-h before the dark period). Differentially expressed genes were identified in response to environmental drought stress and a whole genome wide co-expression network was created as well. We found that the expression of CAM-related genes was not regulated by drought stimuli in K. fedtschenkoi. Our comparative analysis revealed that CAM species (K. fedtschenkoi) and C3 species (Arabidopsis thaliana, Populus deltoides 'WV94') share some common transcriptional changes in genes involved in multiple biological processes in response to drought stress, including ABA signaling and biosynthesis of secondary metabolites.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Sequías , Dióxido de Carbono/metabolismo , Metabolismo Ácido de las Crasuláceas/genética , Genómica , Fotosíntesis/genética , Plantas/metabolismo , Agua/metabolismo
13.
iScience ; 25(4): 104065, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359804

RESUMEN

Efficient utilization of agro-industrial waste, such as sugar beet pulp, is crucial for the bio-based economy. The fungus Aspergillus niger possesses a wide array of enzymes that degrade complex plant biomass substrates, and several regulators have been reported to play a role in their production. The role of the regulators GaaR, AraR, and RhaR in sugar beet pectin degradation has previously been reported. However, genetic regulation of the degradation of sugar beet pulp has not been assessed in detail. In this study, we generated a set of single and combinatorial deletion mutants targeting the pectinolytic regulators GaaR, AraR, RhaR, and GalX as well as the (hemi-)cellulolytic regulators XlnR and ClrB to address their relative contribution to the utilization of sugar beet pulp. We show that A. niger has a flexible regulatory network, adapting to the utilization of (hemi-)cellulose at early timepoints when pectin degradation is impaired.

14.
New Phytol ; 233(3): 1317-1330, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797921

RESUMEN

Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.


Asunto(s)
Líquenes , Xylariales , Endófitos , Hongos , Líquenes/microbiología , Familia de Multigenes , Simbiosis/genética
15.
Plant Direct ; 3(8): e00159, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31468026

RESUMEN

Nutrient remobilization during leaf senescence nourishes the growing plant. Understanding the regulation of this process is essential for reducing our dependence on nitrogen fertilizers and increasing agricultural sustainability. Our laboratory is interested in chromatin changes that accompany the transition to leaf senescence. Previously, darker green leaves were reported for Arabidopsis thaliana hac1 mutants, defective in a gene encoding a histone acetyltransferase in the CREB-binding protein family. Here, we show that two Arabidopsis hac1 alleles display delayed age-related developmental senescence, but have normal dark-induced senescence. Using a combination of ChIP-seq for H3K9ac and RNA-seq for gene expression, we identified 43 potential HAC1 targets during age-related developmental senescence. Genetic analysis demonstrated that one of these potential targets, ERF022, is a positive regulator of leaf senescence. ERF022 is regulated additively by HAC1 and MED25, suggesting MED25 may recruit HAC1 to the ERF022 promoter to increase its expression in older leaves.

16.
Plant Mol Biol ; 84(3): 259-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24072326

RESUMEN

Promoter elements that contribute to high light (HL) induction of the Arabidopsis ELIP1 gene were defined using a transgenic promoter-reporter system. Two adjacent SORLIP1 elements (double SORLIP1, dSL) were found to be essential for HL induction of a GUS reporter gene. The dSL element was also found to be essential for HL induction conferred by the ELIP2 promoter. SORLIP1 elements were enriched in ELIP promoters throughout the plant kingdom, and showed a clade-specific pattern of gain or loss that suggested functionality. In addition, two G-box elements were found to redundantly contribute to HL induction conferred by the ELIP1 promoter.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Luz , Secuencia de Bases , Cartilla de ADN , Genes Reporteros , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Expert Opin Drug Discov ; 2(6): 837-47, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23489001

RESUMEN

Antimicrobial peptides are short peptides (< 100 amino acids) that have a potent function against microbial invasion. These peptides are produced by various organisms, including bacteria, fungi, flowering and non-flowering plants, insects and mammals. Antifungal peptides are a major group of antimicrobial peptides that have a specially potent effect against fungi. Several parameters affect the activity of antifungal peptides, including the sequence, size, charge, degree of structure formation, cationicity, hydrophobicity and amphipathicity. By analysis of numerous antifungal peptide sequences, the roles of these parameters in the structure of antifungal peptides are investigated in this review and by the in silico analysis of the existing residues, occupying each position of sequence, a template sequence is defined to generate potent and efficient lead antifungal peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...